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Abstract
In this review, we will describe calculations using time-dependent density-
functional theory (DFT) combined with pseudopotentials to determine excited
state properties of matter. While a computational framework for ground state
properties of condensed matter is well established, calculations for excited state
properties are at a more formative stage. Time-dependent DFT represents an
important advance by providing an explicit treatment of relevant correlation
effects for electronic excitations. As such, it offers an ab initio formalism for
excited states that avoids many of the drawbacks associated with empirical or
semi-empirical methods. We will illustrate applications of time-dependent DFT
to a variety of systems ranging from molecules and atomic clusters to quantum
dots, which contain several hundred atoms.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

At confined dimensions, optical properties of matter are often altered. For example, elemental
silicon possesses very different properties as a function of size. While silicon in its bulk
form is the dominant material for making electronic devices, it has poor optical properties for
optoelectronic devices such as solar cells or lasers. However, the poor optical properties of
silicon in the bulk form can be dramatically altered at nanoscale dimensions: the bandgap
in silicon can be blue-shifted from the infra-red to the optical region as a function of size.
One of the first manifestations of this effect was observed in porous silicon, which exhibits
remarkable room temperature luminescence [1, 2]. The localization of excitations to nanoscale
dimensions is an essential attribute of porous silicon. This form of silicon could be a good
optical material, if technological issues can be resolved.

To capitalize properly on such phenomena,a deeper understanding of the optical properties
of matter will be required. Historically, optical properties have played a key role in our
understanding of the electronic structure of matter, e.g., the first realistic energy band structures
of semiconductors were found using optical properties as input into electronic structure
calculations [3]. Unfortunately, optical excitations based on contemporary approaches can
be especially challenging because most commonly used methods for structural energies, such
as density-functional theory (DFT), are not well suited for excited state properties. The problem
is exacerbated for nanoscale systems where the many body effects are enhanced by the physical
confinement of the excitation and where hundreds or thousands of atoms are required to model
the simplest systems.

Here we review some recent advances in computational methods for predicting the optical
properties of materials at the nanoscale, or sub-nanoscale. Our focus is on utilizing the
pseudopotential method along with DFT implemented with the local density approximation
(LDA) [4–6]. The combination of the LDA and the pseudopotential approach has proved to
be very successful for predicting the structural and cohesive properties of various solids [7–
10]. The pseudopotential approximation removes the chemically inert core electrons from
the problem, effectively reducing the number of electronic degrees of freedom in the
quantum mechanical equations. Pseudo-wavefunctions are smoothly varying and can be
easily represented within any chosen basis such as a plane wave representation or grid
methods such as finite element or finite differencing [11]. For localized systems such as
molecules or nanoclusters, a direct real-space implementation of this technique is particularly
advantageous [11–20]. With this approach, the Kohn–Sham equation for electronic states
is solved on a real-space three-dimensional grid within a spherical boundary domain. The
kinetic energy operator is approximated by a higher-order finite difference expansion on grid
points [21, 22]. Unlike ‘supercell’ calculations in momentum space [23], real-space methods
do not produce an artificial periodicity, and do not impose restrictions on the net charge of the
system.

The pseudopotential approximation is highly accurate and can be tested by explicitly
including core states [7]. However, implementations of DFT can be more problematic. In
principle, DFT is exact; however, in practice approximations must be made. One of the most
significant limitations of ‘conventional’ density functional formalism is its inability to deal
with electronic excitations. Within time-independent, or static, DFT, a quantum mechanical
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system is described through the electronic charge density. While this approach can be accurate
for the ground state of a many-electron system, the excited electronic states are not adequately
represented by the static formalism [24, 25]. The inability to describe excitations severely
restricts the range of applications for conventional density functional methods, since many
important physical properties such as optical absorption and emission, response to time-
dependent fields, the dynamical dielectric function and the bandgap in semiconductors are
associated with excited states.

Explicit calculations for excited states can present enormous challenges for theoretical
methods. Accurate calculations for excitation energies and absorption spectra typically require
computationally intensive techniques, such as the configuration interaction method [26, 27],
quantum Monte Carlo simulations [28–30] or the Green function methods [31–33]. While
these methods describe electronic excitations properly, they are usually limited to very small
systems because of high computational demands. For example, in quantum Monte Carlo
methods numerous calls must made on the energy integrand and in Green function methods
complex matrix elements must be evaluated.

An alternative approach is to consider methods based on time-dependent DFT such as those
using the time-dependent local density approximation (TDLDA) [24, 25, 34–43]. The TDLDA
technique can be viewed as a natural extension of the ground state density-functional LDA
formalism, designed to include the proper representation of excited states. TDLDA excitation
energies of a many-electron system are usually computed from conventional, time-independent
Kohn–Sham transition energies and wavefunctions. Compared to other theoretical methods for
excited states, the TDLDA technique requires considerably less computational effort; e.g., the
computational load is often comparable to a static density functional calculation [44]. Despite
its relative simplicity, the TDLDA method incorporates screening and relevant correlation
effects for electronic excitations [24, 25, 34, 35]. In this sense, TDLDA represents a fully
ab initio formalism for excited states.

We will review this technique by illustrating computations for transition energies and
optical absorption spectra for several representative systems such as diatomic molecules,
clusters and quantum dots. Our emphasis will be on real-space methods for the electronic
structure problem and on frequency-domain methods for TDLDA. We note that other methods
have been successfully implemented for TDLDA; they are discussed elsewhere [40–42, 45].

2. Theoretical methods

2.1. Finite difference pseudopotential method

The first step in calculating the excited states is to extract the Kohn–Sham eigenvalues and
orbitals for the static case. An efficacious approach for localized systems such as clusters and
quantum dots is to use a real-space approach. Such approaches are often based on a higher-
order finite difference pseudopotential method [12, 13]. The electronic problem is defined by
the Kohn–Sham equation of the form(

−∇2

2
+

∑
a

v
p
ion(r − ra) + vH[ρ(r)] + vxc[ρ(r)]

)
ψi (r) = εiψi (r). (1)

Atomic units, au (h̄ = e = m = 1), are used throughout unless otherwise specified. In
equation (1), the all-electron potential of each ion at ra is replaced by a pseudopotential
v

p
ion(r − ra), which accounts for the interaction with core electrons and nuclei. The Hartree

potential, vH[ρ(r)], given by

∇2vH[ρ(r)] = −4πρ(r) (2)
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Figure 1. Schematic real-space grid for localized systems. The system of interest is placed in a
spherical domain. Outside this domain, the wavefunctions vanish.

describes the electrostatic interactions among valence electrons, and the exchange–correlation
potential, vxc[ρ(r)], represents the non-classical part of the Hamiltonian. ρ(r) is the charge
density. The Kohn–Sham eigenvalues, εi , and eigenwavefunctions, ψi (r), can be used to
extract the electronic properties of the system of interest.

In real-space methods, the potentials and electronic wavefunctions are set up on a grid.
The grid can be a simple Cartesian three-dimensional grid within a spherical domain, as
shown schematically in figure 1. Uniform grids are highly advantageous; they offer an
unbiased representation and are easy to implement [12–19]. The grid points inside the sphere
are described by their discrete space coordinates, {x, y, z}. Outside the boundary domain
wavefunctions are required to vanish. The kinetic energy term, −∇2/2, is approximated by
a higher-order finite difference expansion for the Laplacian operator, which replaces spatial
derivatives with a weighted sum of the wavefunction values at neighbouring grid points,

∇2ψi (x, y, z) = 1

h2

N∑
n=−N

C {2}
N,n [ψi (x + nh, y, z) + ψi (x, y + nh, z) + ψi (x, y, z + nh)] (3)

where h is the grid spacing and C {2}
N,n are the coefficients in the order-N finite difference

expansion for the second derivative. The numerical values of the expansion coefficients are
readily available in the literature [21, 22].

The finite difference order is usually chosen as a compromise between having a fine grid
and a large but sparse Hamiltonian matrix, and having a coarse grid and a small but less sparse
matrix. In electronic structure calculations, a finite difference expansion between N = 4 and
6 typically presents the optimum choice [12, 13].

The ionic pseudopotential is a nonlocal operator, which simulates the angular-momentum-
dependent interaction between the valence electrons and the ion core. We employ the real-space
version of the Kleinman–Bylander [46] form of the nonlocal pseudopotential,

vion(r − ra)ψi (r) = vlocal(r − ra)ψi (r) +
∑
l,m

Glm�vl(r − ra)φlm(r − ra) (4)

where vlocal is the local ionic pseudopotential,�vl = vl − vlocal is the difference between the
local potential and the potential component with the angular momentum l, φlm are the atomic
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pseudo-wavefunctions, and the projection coefficients, Glm , are calculated as

Glm = 〈φlm |�vl |ψi 〉
〈φlm |�vl |φlm〉 . (5)

This form of the pseudopotential limits the non-locality to a small region around each atom.
All calculations presented in this review employed Troullier–Martins pseudopotentials [47].

The exchange–correlation potential within LDA is approximated by a local functional
of the charge density. In our calculations, we used a parametrized form of the Ceperley–
Alder functional [48–50]. Owing to the non-linear nature of the LDA exchange–correlation
functional, the accuracy of this approximation can be improved by accounting for interactions
between the valence charge density and the core charge density. The exchange–correlation
potential is evaluated as a functional of the core-corrected charge density [51],

ρ(r) = ρv(r) +
∑

a

ρcore(|r − ra|), (6)

where ρcore(|r − ra|) is a fixed partial correction for the core charge density [51] and ρv(r) is
the valence charge density calculated as

ρv(r) = −
∑

i

ni |ψi (r)|2, (7)

where ψi (r) are single-electron wavefunctions and ni are occupation numbers.
The Hartree potential is obtained by setting up and solving the Poisson equation for

the charge density using the conjugate-gradient method [52]. To solve the Poisson equation
numerically, we use a higher-order finite difference expansion for the Laplacian operator,
similar to one given by equation (3). Boundary conditions for points outside the main domain
are determined by a multipole expansion of the charge density.

Within this framework, the off-diagonal elements of the Hamiltonian matrix are produced
only by the kinetic energy and the nonlocal part of the ionic pseudopotential. All other
terms, including the local part of the pseudopotential, the Hartree potential, and the exchange–
correlation potential, contribute only to the main diagonal of the Hamiltonian. The system of
Kohn–Sham equations for electronic states is solved within a self-consistent field. The initial
charge density distribution is constructed by superposing atomic charge densities. Based on the
initial charge density, we calculate the Hartree and exchange–correlation potentials, and set up
the Hamiltonian matrix. The matrix equation is solved numerically by iterative diagonalization
using the generalized Davidson algorithm [52, 53]. From the solution of this matrix equation
we obtain a new distribution of the charge density. The self-consistent procedure is repeated
until we achieve the desired convergence of the numerical solution. The convergence criterion
in our calculations is defined by the root-mean-square difference between the input and output
potentials. Typically, one requires this difference to be less than 10−4 au.

2.2. Time-dependent density functional theory

The central theorem of DFT states that the external potential and the ground state energy
of a system of interacting electrons are uniquely determined by the ground state charge
density [4–6]. However, the traditional formulation of the density functional formalism is
restricted to the time-independent case. A proper treatment of electronic excitations is not
possible within the time-independent framework; it requires a generalization of DFT to time-
dependent phenomena. This limitation has led to the development of time-dependent DFT
(TDDFT) [54–62]. Within TDDFT, the main theorem of the density functional formalism
is extended to time-dependent systems. Similarly to the case of time-independent DFT, the
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time-dependent formalism reduces the many-electron problem to a set of self-consistent single-
particle equations [59, 60],(

−∇2

2
+ veff [ρ(r, t)]

)
ψi (r, t) = i

∂

∂ t
ψi (r, t). (8)

In this case, the single-particle wavefunctions,ψi(r, t), and the effective potential, veff[ρ(r, t)],
explicitly depend on time. The effective potential is given by

veff [ρ(r, t)] =
∑

a

v
p
ion(r − ra) + vH[ρ(r, t)] + vxc[ρ(r, t)]. (9)

The three terms on the right-hand side of equation (9) describe the external ionic potential,
the Hartree potential, and the exchange–correlation potential, respectively. In the adiabatic
approximation, which is local in time, the exchange–correlationpotential and its first derivative
can be expressed in terms of the time-independent exchange–correlation energy, Exc[ρ],

vxc[ρ(r, t)] ∼= δExc[ρ]

δρ(r)
,

δvxc[ρ(r, t)]

δρ(r′, t ′)
∼= δ(t − t ′)

δ2 Exc[ρ]

δρ(r)δρ(r′)
. (10)

The energy Exc[ρ] in equation (10) can be further approximated by a regular LDA exchange–
correlation functional:

Exc[ρ] =
∫
ρ(r)εxc[ρ(r)] dr. (11)

The LDA makes a separate local approximation; i.e., within the LDA, the exchange–correlation
energy density is local in space.

While the LDA in time-dependent DFT has proven itself for molecules, clusters, and
small quantum dots and small clusters, several questions remain as areas of active research.
The application of TDLDA to large, extended systems remains problematic. It is widely
accepted that TDLDA as outlined here will approach the LDA results for extended systems
and, consequently suffer the flaws of LDA such as exhibiting bandgaps much smaller than
experiment [45]. However, recent work using modified forms of TDLDA suggest that it may
be of use for extended systems [63, 64]. Also, most implementations of time-dependent DFT
are based on the local density approximation or the generalized gradient approximation [65, 66].
However, these approximations are known to have the wrong asymptotic behaviour; e.g. the
potential does not scale as 1/r for large distances. It is believed that more accurate TDLDA
methods will necessitate other forms of the density functional. Examples of such an approach
are the asymptotically corrected local density approximations introduced by Casida and
Salahub [67], and by van Leeuwen and Baerends [68]. These potentials have recently been
investigated using the current formalism [69].

2.3. Linear response in TDDFT

The linear response formalism within TDDFT provides a theoretical basis for the TDLDA
method. In this section, we illustrate how TDLDA excitation energies and oscillator
strengths are derived from single-electron Kohn–Sham eigenvalues and eigenwavefunctions.
A comprehensive analysis of time-dependent density-functional response theory can be found
elsewhere [24, 25, 34, 35]. We use the general notation and follow the discussion of
Casida [34, 35].

The response of the Kohn–Sham density matrix within TDDFT is obtained by introducing
a time-dependent perturbation δvappl(r, t). Due to the self-consistent nature of the Kohn–
Sham Hamiltonian, the effective perturbation includes the response of the self-consistent field,
δvSCF[ρ(r, t)],

δveff [ρ(r, t)] = δvappl(r, t) + δvSCF[ρ(r, t)], (12)
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where the self-consistent field is given by the last two terms in equation (9):

vSCF[ρ(r, t)] =
∫
ρv(r

′, t)

|r − r′| dr′ + vxc[ρ(r, t)]. (13)

With the frequency domain, the response of the Kohn–Sham density matrix, δP (ω), to the
perturbation can be derived using a generalized susceptibility, χ(ω). For quasi-independent
Kohn–Sham particles, the sum-over-states representation of the generalized susceptibility is
given by

χi jσ,klτ (ω) = δi,kδ j,lδσ,τ
λlkτ

ω − ωlkτ
, (14)

where λlkτ = nlτ −nkτ is the difference between the occupation numbers, andωlkτ = εkτ −εlτ

is the difference between the eigenvalues of the lth and kth single-particle states. The
susceptibility in equation (14) is expressed in the basis of the unperturbed Kohn–Sham orbitals
{ψiσ } and the indices i , j , and σ (k, l, and τ ) refer to space and spin wave components,
respectively. The linear response of the density matrix is

δPi jσ (ω) =
∑
klτ

χi jσ,klτ (ω)δv
eff
klτ (ω) = λ j iσ

ω − ω j iσ
[δvappl

i jσ (ω) + δvSCF
i jσ (ω)]. (15)

Equation (15) is, however, complicated by the fact that δvSCF(ω) depends on the response of
the density matrix,

δvSCF
i jσ (ω) =

∑
klτ

Ki jσ,klτ δPklτ (ω), (16)

where the coupling matrix K describes the response of the self-consistent field to changes in
the charge density. Within the adiabatic approximation, this matrix is frequency independent.
The analytical expression for the adiabatic coupling matrix, Ki jσ,klτ = ∂vSCF

i jσ /∂Pklτ , can be
derived from equation (13) by making use of the functional chain rule,

Ki jσ,klτ =
∫ ∫

ψ∗
iσ (r)ψ jσ (r)

(
1

|r − r ′| +
δ2 Exc[ρ]

δρσ (r)δρτ (r′)

)
ψkτ (r

′)ψ∗
lτ (r

′) dr dr′. (17)

The functional derivative in equation (17) is evaluated with respect to the unperturbed charge
densities. By using the coupling matrix, equation (15) can be rewritten as

λklτ �=0∑
klτ

[
δi,kδ j,lδσ,τ

ω − ωlkτ

λlkτ
− Ki jσ,klτ

]
δPklτ (ω) = δv

appl
i jσ (ω). (18)

Since the summation in equation (18) is performed over all occupied and unoccupied orbitals,
it contains both the particle–hole and hole–particle contributions [34, 35]. These contributions
can be written as two separate equations: the particle–hole part of vappl(ω) is given by

λklτ >0∑
klτ

[
δi,kδ j,lδσ,τ

ω − ωlkτ

λlkτ
− Ki jσ,klτ

]
δPklτ (ω)−

λklτ >0∑
klτ

Ki jσ,lkτ δPlkτ (ω) = δv
appl
i jσ (ω) (19)

and the hole–particle part of vappl(ω) is

λklτ >0∑
klτ

[
δi,kδ j,lδσ,τ

ω − ωklτ

λklτ
− K jiσ,lkτ

]
δPlkτ (ω)−

λklτ >0∑
klτ

K jiσ,klτ δPklτ (ω) = δv
appl
j iσ (ω). (20)

Combining equations (19) and (20), one can separate the real and imaginary parts of the density
matrix response, δP (ω). If the basis functions {ψiσ } in equation (17) are real, the coupling
matrix K is also real and symmetric with respect to the interchange of space indices i ↔ j
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and k ↔ l. Since δP (ω) is Hermitian (i.e. δPjiσ = δP∗
i jσ ), the real part of δP (ω) for a real

perturbation vappl(ω) is given by

λklτ >0∑
klτ

[
δi,kδ j,lδσ,τ

λklτ ωklτ
(ω2 − ω2

klτ )− 2Ki jσ,klτ

]
Re(δPklτ )(ω) = δv

appl
i jσ (ω), (21)

where Re(δPi jσ )(ω) denotes the Fourier transform of the real part of δPi jσ (t).
Equation (21) can be used to obtain the density functional expression for the dynamic

polarizability. This is accomplished by introducing a perturbation δv̂appl(t) = γ̂ Eγ (t), where
Eγ is an external electric field applied along the γ -axis, γ = {x, y, z}. The linear response of
the dipole moment, δµ(ω), is expressed through the real part of δP (ω) as

δµβ(ω) = −2
λi jσ>0∑

i jσ

β j iσ Re(δPi jσ )(ω), β = {x, y, z}. (22)

The components of the dynamic polarizability tensor are given by

αβγ (ω) = δµβ(ω)

Eγ (ω)
= − 2

Eγ (ω)
λi jσ>0∑

i jσ

β j iσ Re(δPi jσ )(ω), β, γ = {x, y, z}. (23)

Solving equation (21) with respect to Re(δPi jσ )(ω) and substituting the result into
equation (23), one obtains the following matrix equation for the polarizability components:

αβγ (ω) = 2β̂R1/2[Q − ω21]−1R1/2γ̂ , β, γ = {x, y, z}, (24)

where the matrices R and Q are given by

Ri jσ,klτ = δi,kδ j,lδσ,τ λklτ ωklτ , (25)

Qi jσ,klτ = δi,kδ j,lδσ,τω
2
klτ + 2

√
λi jσωi jσ Ki jσ,klτ

√
λklτ ωklτ . (26)

The TDLDA expressions for excitation energies and oscillator strengths can be derived
by comparing equation (24) with the general sum-over-states formula for the average dynamic
polarizability, 〈α(ω)〉 = tr(αβγ (ω))/3 = ∑

I f I /(�
2
I −ω2). The true excitation energies,�I ,

which correspond to the poles of the dynamic polarizability, are obtained from the solution of
the eigenvalue problem,

QFI = �2
I FI . (27)

The oscillator strengths, f I , which correspond to the residues of the dynamic polarizability,
are given by

fI = 2
3

3∑
β=1

|BT
βR1/2FI |2, (28)

where FI are the eigenvectors of equation (27), (Bβ)i jσ = ∫
ψ∗

iσ rβψ jσ dr, and {r1, r2, r3} =
{x, y, z}.

2.4. Real-space implementation

The adiabatic TDLDA calculations for optical spectra require only the knowledge of the time-
independent single-electron Kohn–Sham transition energies and wavefunctions. The most
computationally demanding part in such calculations is the evaluation of the coupling matrix
given by equation (17). This equation can be split into two parts: K = K(I) + K(II). The
first term represents a double integral over 1/|r − r′|. Instead of performing the costly double
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integration by direct summation, we calculate this term by solving the Poisson equation within
the boundary domain. We employ the conjugate-gradient method to solve

∇2�i jσ (r) = −4πψiσ (r)ψ jσ (r). (29)

The first term in equation (17) is calculated as

K (I)
i jσ,klτ =

∫
�i jσ (r)ψkτ (r)ψlτ (r) dr. (30)

The Poisson equation method provides a considerable speed-up as compared to the direct
summation. The second term in equation (17) represents a double integral over the functional
derivative of the exchange–correlation energy, δ2 Exc[ρ]/δρσ(r)δρτ (r′). Within the local
approximation of the exchange–correlation potential this term is reduced to a single integral,

K (II)
i jσ,klτ =

∫
ψiσ (r)ψ jσ (r)

δ2 Exc[ρ]

δρσ (r)δρτ (r)
ψkτ (r)ψlτ (r) dr, (31)

where the LDA exchange–correlation energy, Exc[ρ], is given by equation (11).
Equation (31) requires the evaluation of the second derivatives for the LDA exchange–

correlation energy with respect to spin-up and spin-down charge densities. The LDA exchange
energy per particle is normally approximated by that of the homogeneous electron gas [70],

εx[ρσ (r)] = − 3

4π
(6π2ρσ (r))

1/3, σ = {↑,↓}. (32)

The first derivative of the total exchange energy determines the LDA exchange potential,

δEx[ρ]

δρσ
= vx[ρσ ] = − 1

π
(6π2ρσ )

1/3, σ = {↑,↓}. (33)

The second derivatives are

δ2 Ex[ρ]

δρ↑δρ↑
= −

(
2

9π

)1/3

ρ
−2/3
↑ ,

δ2 Ex[ρ]

δρ↑δρ↓
= 0. (34)

We employ a parametrized form of Ceperley–Alder functional [48–50] for the LDA
correlation energy. This functional is based on two different analytical expressions for rs < 1
and rs � 1, where rs = (3/4πρ)1/3 is the local Seitz radius and ρ = ρ↑ + ρ↓. One can adjust
the parametrization for rs < 1 to guarantee a continuous second derivative of the correlation
energy. The adjusted interpolation formula for the correlation energy per particle is given
by [71]

εU,P
c =

{
A ln rs + B + Crs ln rs + Drs + Xr2

s ln rs, rs < 1

γ /(1 + β1
√

rs + β2rs), rs � 1,
(35)

where two separate sets of coefficients are used for the polarized spin (P) and unpolarized spin
(U) cases. The numerical values of all fitting parameters appearing in equation (35) can be
found in [72]. The adjusted interpolation formula for the correlation energy is continuous up
to its second derivative, while the original Perdew–Zunger parametrization is not [50].

Equations (32)–(35) describe only the cases of the completely polarized and unpolarized
spin. For intermediate spin polarizations, the correlation energy can be obtained with a simple
interpolation formula,

εc = εU
c + ξ(ρ)[εP

c − εU
c ], (36)

where

ξ(ρ) = 1

1 − 2−1/3
(x4/3

↑ + x4/3
↓ − 2−1/3); x↑ = ρ↑

ρ
, x↓ = ρ↓

ρ
. (37)
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The expression for the second derivative of the correlation energy in the case of an arbitrary
spin polarization can be written as

δ2 Ec[ρ]

δρσ δρτ
= δ2 EU

c

δρ2
+ ξ(ρ)

(
δ2 EP

c

δρ2
− δ2 EU

c

δρ2

)
+

(
∂ξ(ρ)

∂ρσ
+
∂ξ(ρ)

∂ρτ

)(
δEP

c

δρ
− δEU

c

δρ

)

+
∂2ξ(ρ)

∂ρσ ∂ρτ
ρ(εP

c − εU
c ), σ, τ = {↑,↓}, (38)

where the spin polarization function, ξ(ρ), and its derivatives are given by

∂ξ(ρ)

∂ρ↑
= 4

3ρ(1 − 2−1/3)
(x1/3

↑ − x4/3
↑ − x4/3

↓ ), (39)

∂2ξ(ρ)

∂ρ↑∂ρ↑
= 4

9ρ2(1 − 2−1/3)
(x−2/3

↑ − 8x1/3
↑ + 7(x4/3

↑ + x4/3
↓ )), (40)

∂2ξ(ρ)

∂ρ↑∂ρ↓
= 4

9ρ2(1 − 2−1/3)
(7(x4/3

↑ + x4/3
↓ )− 4(x1/3

↑ + x1/3
↓ )). (41)

2.5. Systems with unpolarized spin

The TDLDA formalism presented in previous sections can be further simplified for systems
with unpolarized spin. In this case, the spin-up and spin-down charge densities are equal,
ρ↑ = ρ↓, and equations (37) and (39)–(41) yield

ξ(ρ) = 0,
∂2ξ(ρ)

∂ρ↑∂ρ↑
= 4

9ρ2(21/3 − 1)
,

∂ξ(ρ)

∂ρ↑
= 0,

∂2ξ(ρ)

∂ρ↑∂ρ↓
= − 4

9ρ2(21/3 − 1)
.

(42)

Since the coordinate parts of spin-up and spin-down Kohn–Sham wavefunctions for systems
with unpolarized spin are identical, ψi↑ = ψi↓, it follows that Qi j↑,kl↑ = Qi j↓,kl↓ and
Qi j↑,kl↓ = Qi j↓,kl↑. This allows us to separate ‘singlet’ and ‘triplet’ transitions by representing
equation (27) in the basis set of {F+,F−}, chosen as

F {+,−}
i j = 1√

2
(Fi j↑ ± Fi j↓). (43)

In this basis, the matrix Q becomes

Q{+,−}
i j,kl = δi,kδ j,lω

2
kl + 2

√
λi jωi j K {+,−}

i j,kl

√
λklωkl , (44)

where K {+,−}
i j,kl = Ki j↑,kl↑ ± Ki j↑,kl↓. The components of K{+,−} in their explicit form are given

by

K +
i j,kl = 2

∫ ∫
ψi (r)ψ j (r)ψk(r

′)ψl(r
′)

|r − r ′| dr dr′

+ 2
∫
ψi (r)ψ j (r)

(
δ2 EU

c

δρ2
− 1

(9π)1/3ρ2/3

)
ψk(r)ψl(r) dr, (45)

K −
i j,kl = 2

∫
ψi (r)ψ j (r)

(
4(εP

c − εU
c )

9(21/3 − 1)
− 1

(9π)1/3ρ2/3

)
ψk(r)ψl(r) dr. (46)

For most practical applications,only ‘singlet’ transitions represented by the F+ basis vectors are
of interest. Triplet transitions described by the F− vectors have zero dipole oscillator strength
and do not contribute to optical absorption [34, 35]. By solving equation (27) for the F+ vectors
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only, we reduce the dimension of the eigenvalue problem by a factor of two. Equations (44)–
(46), however, can only be applied to systems with unpolarized spin. In the case of an arbitrary
spin polarization, the general form of the matrix Qpresented by equation (26) with the coupling
matrix given by equation (17) and the functional derivatives given by equations (33)– (41) must
be used.

Other than the adiabatic local density approximation, no additional approximations have
been made. The exact solution of the matrix equation (27) incorporates all relevant correlations
among single-particle transitions.

The frequency-domain approach presented here lends itself naturally to a massively
parallel solution within the real-space grid method. We use a multipole expansion to form the
boundary condition, followed by a conjugate-gradientbased solution, just as we did to evaluate
the Hartree term in the time-independent Kohn–Sham (equation (1)). This step is the most
computationally intensive step in forming the TDLDA matrix. However, each i jσ combination
defines a row in the coupling matrix and theψi jσ term of equation (3) is fixed within each row,so
this need be done only once per matrix row. One merely evaluates the integrals of equations (30)
and (31) as simple sums, for each element within a matrix row. The evaluation of each matrix
row is completely independent of the evaluation of another row, leading to ‘embarrassingly
simple’ parallelization, i.e. there is no need for communication between processors working on
different matrix rows. Once, the matrix is diagonalized using any off-the-shelf diagonalization
approach. Further implementation details can be found elsewhere [44].

3. Applications of time-dependent density-functional theory

3.1. Molecular systems

The TDLDA can easily be applied to molecular systems such as simple dimers. These systems
have two distinct advantages.

(1) They are sufficiently small to be handled by a variety of techniques. This allows one to
compare methods with TDLDA. For example, the chemistry literature contains a number
of papers where TDLDA or some variation thereof is applied to molecular systems;
see e.g. [37–39].

(2) Experimental data exist for these systems, which allows us to compare the accuracy of
the various approaches. Here we illustrate TDLDA applied to BeO and CO molecules.

We compare to experiment and to the GW–Bethe–Salpeter (GW–BS) method. The GW–
BS method is a highly successful approach for predicting the optical properties of matter. The
first step within this method is to consider a solution for a quasiparticle excitation [31–33, 73–
75]. The energies and wavefunctions, EQP andψQP of quasiparticle excited states are obtained
from a Dyson equation:

[T + Vext(r) + VH(r)]ψQP(r) +
∫
�(r, r′; EQP)ψQP(r′) dr′ = EQPψQP(r) (47)

where T is the kinetic energy operator, Vext is the external potential from the ion cores (in
our case this corresponds to the ionic pseudopotential), VH is the Hartree potential, and � is
the electron self-energy operator. Equation (47) is similar in form to equation (1), save for
the physical content of the terms. Evaluating the quasiparticle term � is considerably more
difficult than the eigenvalue problem in equation (1). � is a nonlocal, energy-dependent, non-
Hermitian operator whose imaginary part gives the lifetime of the excitation [31–33, 73–75].
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The GW approximation to a solution of equation (47) involves constructing the self-energy
operator as the first-order term in a series expansion of the screened Coulomb interaction, W ,
and the dressed Green function, G, of the electron:

�(r, r′; EQP) = i

2π

∫
dω e−iδωG(r, r′; E − ω)W (r, r′;ω) (48)

where δ is a positive infinitesimal. W = ε−1Vc where ε is the dielectric response function and
Vc is the bare Coulomb interaction. This term contains the dynamical many-body effects for
electron–electron interactions. The heart of this approach concerns an accurate description
of the dielectric response function: ε(r, r′;ω). In crystalline matter, a dielectric function is
constructed in reciprocal space: ε �G, �G ′(�q, ω). This function contains ‘local field’ effects, i.e.,
it contains variations of the electronic screening within the unit cell.

The strategy for solving equation (47) involves using LDA wavefunctions for the
quasiparticles and constructing a dielectric matrix [31–33, 73–75]. Once the GW part of
the problem is solved, it is possible to include the electron–hole interaction component. We
can write the electron–hole interaction wavefunction as

χex(r, r
′) =

∑
e,h

Ae,hψ
QP
e (r)ψQP

e (r′). (49)

The excitations and expansion coefficients (Ae,h) can be obtained from the Bethe–Salpeter
(BS) equation:

(EQP
e − EQP

h )Aeh +
∑
e′,h′

Ke,h,e′,h′(�BSE
ex )Ae′,h′ = �BSE

ex Ae,h. (50)

K is an e–h coupling matrix that contains a direct Coulomb interaction and exchange [76]. This
formalism works very well for crystalline matter, even for highly ionic materials that possess
a large e–h interaction. However, applications to noncrystalline matter are computationally
intensive. Supercells are currently used to model the systems of interest. This approach often
involves a rather large plane wave basis to replicate ‘vacuum’. As such, few calculations for
clusters of more than a few dozen atoms exist [76, 77].

Within DFT, we may solve for the ground state energy, E0, of a diatomic molecule as a
function of the bond length, R. We obtain the excitation energy, EI , as a function of R using

EI (R) = E0(R) +�I (R). (51)

�I (R) corresponds to the excitation as found in equation (27). LDA is known to give reasonable
bond lengths and vibrational frequencies. As such, we expect E0(R) to represent accurately
the ground state energy. In addition, we focus only on singlet excited states, although triplet
excited states can be computed through the same approach.

We note that it should be possible to use this expression to find forces for excited states:
∂EI (R)

∂R
= ∂E0(R)

∂R
+
∂�I (R)

∂R
. (52)

Finding the derivative of the ground state energy is straightforward. The derivative of
the excitation energy is more cumbersome, but it can be evaluated from equations (26)
and (27) [78]. This formalism can be used to describe excited relaxations such as those
occurring in photochemical reactions. A similar approach has been used in GW–BSE
methods [79].

In figures 2 and 3, and table 1, we give results from GW–BSE and TDLDA and compare to
experiment. The ground state configuration for BeO and CO is known to be X 1�+. For BeO,
LDA gives a bond length of 1.34 Å; the experimental value is 1.33 Å [80]; the corresponding
numbers for CO are 1.25 and 1.24 Å, respectively. In this particular example, GW–BS and
TDLDA give comparable results; both agree well with experiment. This is not atypical;
TDLDA can be as accurate as GW–BS for small molecules [78].
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Figure 2. Optical excitation energies for a BeO molecule as a function of bond length. For the
excited states, the solid curves are for a TDLDA calculation as outlined in the text. The dashed
curves are for a GW–BSE solution. The curves represent a cubic fit.

E

Figure 3. Optical excitation energies for a CO molecule as a function of bond length. Show are
three calculations: static LDA for the ground state, TDLDA and GW–BSE results for the excited
state. See text for details. The curves represent a cubic fit.

3.2. Passivated silicon clusters and quantum dots

The study of hydrogenated silicon clusters and quantum dots is essential for understanding
the absorption and emission of visible light in porous silicon [1]. As such, SinHm clusters
have been the subject of intensive experimental [81–85] and theoretical [77, 86–91] research.
Inconsistencies between the different theoretical models used to describe electronic excitations
in these systems remain a subject of contention. For the most part, the inconsistencies arise
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Table 1. Excited states and bond lengths for BeO and CO molecules.

Energy (eV) Bond length (Å)
Electronic
configuration TDLDA GW–BSE Expt TDLDA GW–BSE Expt

A 1� [BeO] 1.14 0.91 1.17 1.44 1.49 1.46
B 1�+ [BeO] 2.47 2.67 2.64 1.32 1.37 1.36
A 1� [CO] 7.9 8.3 8.1 1.25 1.25 1.24

from the formulation of the optical gap in confined systems and the calculation of different
components comprising the optical gap [92–95].

The primary focus of theoretical studies is the size dependence of photoluminescence
energies and photoabsorption gaps [85, 86, 88, 90–92, 96]. In many cases, such studies do
not evaluate oscillator strengths and cannot explicitly identify optically allowed and forbidden
transitions [30]. This creates uncertainties in the theoretical interpretation of the experimentally
measured optical absorption. The scarcity of theoretical studies dealing with the optical spectra
for larger clusters can be explained by the complexity of such calculations, e.g. the difficulty in
describing many-body effects in confined systems and the large number of degrees of freedom
for these systems.

Structures of SinHm clusters can be obtained by starting with the coordinates of bulk
silicon and minimizing the interatomic forces acting on silicon and hydrogen atoms. Atomic
forces can be minimized by a variable metric algorithm [97]. This algorithm offers substantial
savings in computer time over the standard steepest-descent method. For larger clusters, i.e.,
clusters with more than ∼50 Si atoms, one often relaxes only the outer layers and in particular
the Si–H bond length. Structures of selected SinHm clusters are shown in figure 4.

One needs to test boundary conditions used in real-space implementations. For example,
one typically requires a 10–12 au separation between the surface atoms at the boundary of
the computational domain. Also, in the calculation for TDLDA transition matrix elements,
one usually includes two to three times as many unoccupied states as the number of occupied
electronic states. These conditions are sufficient to achieve convergence of the computed
spectra in the experimentally important optical region below 10 eV.

The calculated absorption spectra of SinHm clusters are shown in figure 5. Only electronic
transitions below a given energy threshold are displayed owing to computational constraints.
We also show the spectra of time-independent Kohn–Sham LDA eigenvalues. As in the case
of metallic and semiconductor clusters with free surfaces [36, 98, 99], the TDLDA spectra
of SinHm clusters are blue-shifted with respect to the Kohn–Sham eigenvalue spectra. Unlike
optical spectra of ‘bare’ semiconductor clusters considered in the previous section, the spectra
of hydrogenated silicon clusters do not display low-energy transitions associated with the
surface states. Photoabsorption gaps for SinHm clusters are much larger than those of Sin

clusters with open surfaces.
In table 2, we compare TDLDA values for the excitation energies of the first three SinHm

clusters with experimental data [81, 90] as well as with the values calculated using the BS
technique [77]. The last column in table 2 shows the Kohn–Sham LDA ‘ionization’ energies
of the clusters, −εLDA

HOMO, given by the negative values of the energies for the highest occupied
LDA electronic orbitals. Table 2 demonstrates that the calculated TDLDA excitation energies
for the transitions below, or close to, −εLDA

HOMO agree well with the experimental data and
the BS values. The agreement, however, deteriorates for higher excitations, which lie above
−εLDA

HOMO. As the size of clusters increases, the energy of the first allowed excitation moves
further down from the LDA ‘ionization’ energy, and agreement with experiment improves.
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Figure 4. Ball and stick models for hydrogenated silicon clusters.

For large SinHm clusters, we found that the first allowed optical transitions are always located
below −εLDA

HOMO. On this basis, we believe that TDLDA should provide an accurate description
for the photoabsorption gaps and the low-energy optical transitions in larger SinHm clusters.

The optical absorption gaps for small clusters can be defined directly by the energy of the
first dipole-allowed transition in their absorption spectra. For large clusters, the absorption
spectra become essentially quasi-continuous. A large number of low-intensity transitions
exist near the absorption edge. Taken individually, the oscillator strengths of these transitions
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Figure 5. Calculated TDLDA absorption spectra of SinHm clusters (solid curves). Spectra of
time-independent Kohn–Sham LDA eigenvalues (dotted curves) are shown for comparison. All
spectra are broadened by 0.1 eV using a Gaussian convolution. For details see [72].
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Figure 6. Oscillator strength for optical transitions in hydrogenated silicon clusters as a function
of cluster size. The strength is determined by considering transitions near the gap. The dashed line
is a linear fit.

Table 2. Excitation energies of hydrogenated silicon clusters. The experimental optical absorption
energies are taken from [81] (silane and disilane) and [90] (neopentasilane). The assignment of
electronic excitations for silane and disilane corresponds to the Rydberg transitions. The BS
excitation energies are adapted from [77]. −εLDA

HOMO is the time-independent LDA ‘ionization’
energy. All values are in electronvolts.

Cluster Transition Experiment BS TDLDA −εLDA
HOMO

SiH4 4s 8.8 9.0 8.2 8.6
4p 9.7 10.2 9.2
4d 10.7 11.2 9.7

Si2H6 4s 7.6 7.6 7.3 7.5
4p 8.4 9.0 7.8

Si5H12 — 6.5 7.2 6.6 7.3

would be located far below the experimentally detectable limit. As a result, identifying the
first allowed optical transition in the case of large clusters is not a trivial task. As the size of
clusters increases, the absorption gaps gradually decrease, and the discrete spectra for small
clusters evolve into quasi-continuous spectra for silicon nanocrystals. Figure 6 demonstrates
that oscillator strength of dipole-allowed transitions near the absorption edge decreases with
increasing cluster size. This fact is consistent with the formation of an indirect bandgap in the
limit of bulk silicon [90].

Rather than associating the optical gaps with the individual transitions, one can define a
procedure for fixing the optical gap, Eopt

gap, via an integral of the oscillator strength. In particular,
the following prescription has been suggested [100] to define the gap:

pF =
∫ Eopt

gap

0
σ(ω) dω (53)



R1534 Topical Review

0 5 10 15 20 25 30

Cluster diameter (Å)

A
bs

or
pt

io
n 

ga
p 

(e
V

)

0

2

4

6

8

10

–

–

–

–

Experiment

TDLDA

BS

HF–CI

Figure 7. Variation of optical absorption gaps as a function of cluster diameter. Theoretical
values shown in the plot include the gaps calculated by the TDLDA method (see [72]), by the BS
technique [77] and by the Hartree–Fock method with the correlation included through the HF–
CI [91]. Experimental values are taken from [81–83, 90]. The dashed curves are a guide to the
eye.

where F is the total optical cross section, σ(ω) is the optical cross section for a given frequency,
ω, and p is some prescribed fraction of the total cross-section for the fixing the gap. For the
photoabsorption gaps, a typical value of p might be 10−4. This definition for the absorption
gap does not affect the values of the optical gaps for small SinHm clusters, since the intensity of
their first allowed transitions is much higher than the selected threshold. An order of magnitude
change in p does not typically change the gap size by more than 0.1 eV. At the same time,
equation (53) offers a convenient method for the evaluation of optical gaps in large clusters.

The variation of the optical absorption gaps as a function of cluster size is shown in figure 7.
Along with the TDLDA values, we include optical gaps calculated by the BS technique [77].
For very small clusters, SiH4, Si2H6, and Si5H12, the gaps computed by the TDLDA method
are close to the BS values, although for Si10H16 and Si14H20 our gaps are considerably smaller
than the BS gaps. The TDLDA gaps for clusters in the size range from 5 to 71 silicon atoms are
larger by ∼1 eV than the gaps calculated by the Hartree–Fock technique with the correlation
correction included through the configuration-interaction approximation (HF–CI) [91].

These differences are consistent with the fact that the BS calculations systematically
overestimate and the HF–CI calculations of [91] underestimate the experimental absorption
gaps. For example, for the optical absorption gap of Si5H12 the BS, TDLDA, and HF–CI
methods predict the values of 7.2, 6.6, and 5.3 eV, respectively, compared to the experimental
value of 6.5 eV. However, it is not clear whether the gaps of [91] refer to the optically allowed
or optically forbidden transitions, which may offer a possible explanation for the observed
discrepancy. For large clusters, we find the TDLDA optical gaps to be in generally good
agreement with the photoabsorption gaps evaluated by the majority of self-energy corrected
LDA [90, 96] and empirical techniques [88, 89, 101]. At present, the full TDLDA calculations
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Figure 8. Gaps determined from LDA and TDLDA for hydrogenated silicon clusters. (a) The gaps
plotted without regard to the oscillator strength. (b) The gaps determined using the criteria from
equation (53).

for clusters larger than a few nanometres can exceed the capabilities of most computational
platforms. Nevertheless, the extrapolation of the TDLDA curve in the limit of large clusters
comes very close to the experimental values for the photoabsorption gaps. Software and
hardware advances should make a direct verification of this possible in the near future.

3.3. The role of oscillator strengths in fixing the optical gap

In determining the optical gaps within a linear response approach, only excitations with an
induced dipole are incorporated. In real-time methods, the induced dipole term is calculated
directly [40–42]. Within our frequency domain description, two factors enter into ascertaining
the existence of an induced dipole: the existence of a transition energy and the corresponding
oscillator strength. Within TDLDA, these terms can be obtained from equation (27) as �I

and FI . These terms must always be considered together when predicting optical properties,
although sometimes this is not done [30].

In figure 8, we illustrate the lowest transitions without regard to oscillator strength for
both LDA and TDLDA calculations. We also illustrate transitions as defined by equation (53).
For these transitions, the gap is defined when the oscillator strength assumes a value of at
least 10−4 of the total optical cross-section. The main difference between LDA and TDLDA
for these systems is a strong blue-shift of the oscillator strength. This effect can also be
documented for smaller hydrogenated silicon molecules. In figure 9, we illustrate the optical
spectrum using LDA and weighting each transition by the dipole matrix element. We do the
same for the TDLDA spectrum. The threshold for the LDA transition is approximately 5.8 eV,
which is the same as the lowest TDLDA eigenvalue, �0, as determined from equation (27),
to within 0.1 eV. However, the spectrum clearly indicates that significant optical absorption
does not occur until nearly 6.6 eV. This value is consistent with experiment. For the majority
of the hydrogenated clusters, with SiH4 being an exception, the oscillator strength of the first
TDLDA transition vanishes. The difference between the lowest transition and the first allowed
optical transition can be significant. This suggests that TDLDA methods based on a single-pole
approximation [24, 25] without regard to the oscillator strength will not successfully describe
these systems.
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panel shows the lowest eigenvalue from equation (27). The experiment shows the measured optical
gap as quoted in [90].

It should be noted that real-time methods for TDLDA do not require an knowledge of
unoccupied eigenvalues [40–42]. In this formalism, the absorption spectrum evolves from
taking the power spectrum of the instantaneous induced dipole. The resolution of an optical
transition is determined by the length of the time integration [40–42].

3.4. The role of oxygen in silicon quantum dots

Porous and nanocrystalline silicon studied in experiments are prepared under a variety of
surface conditions determined by the etching technique and external chemical environments
employed. Only a fraction of published experimental data refers to ‘pure’ hydrogenated silicon
dots [82]. Other measurements are performed on partially oxidized nanocrystals [102, 103].
For many cases, a precise chemical composition of nanocrystalline surfaces is not
known [83, 104, 105].

However, most calculations for optical absorption and emission in silicon dots do not take
into account differences in structure and chemical composition of the dot surface. This creates
an ambiguity in the interpretation of experimental data. Almost all ab initio and empirical
simulations available in the literature use silicon dots passivated with hydrogen [77, 86, 89–
91, 96, 101, 106], although some notable exceptions exist [107, 108]. This limitation is also
true for structural issues, where only a few systems have been examined for reconstructed
surfaces [109, 110].

Theoretical calculations [77, 86, 89–91, 96, 101, 106] based on a quantum confinement
model show general agreement with experimental measurements [82] for optical absorption
in hydrogen-passivated silicon clusters. In contrast, experiments performed on oxidized
samples often display photoluminescence with energies significantly below the values of
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optical gaps predicted by the confinement model for clusters in the same size range [102, 103].
This disagreement could be greater than 1 eV. It has been suggested that the onset of
photoluminescence in silicon nanocrystals may be associated with the optical Stokes shift [111]
and excitonic exchange splitting [112]. While these effects could be significant in small silicon
dots, it appears that neither the Stokes shift, nor the excitonic exchange splitting alone, could
explain such a large disagreement between experiment and theory.

Recent experimental data present strong evidence that surface effects produce a very
substantial impact on the electronic and optical properties of nanocrystalline silicon.
Specifically, Wolkin et al [84] observed a large red-shift of photoluminescence in porous
silicon after exposure to air. The study reported a shift of photoluminescence of the order of
1 eV for samples composed of crystallites smaller than 2 nm in size. The observed red-shift
has been attributed to surface oxidation of silicon nanocrystals. According to the interpretation
proposed in [84], oxygen creates trapped electron and hole states on nanocrystalline surfaces.
The trapped surface states reduce the effective size of the optical gap. This mechanism can
explain the difference between the energy of the measured photoluminescence and theoretical
predictions based on the quantum confinement model.

Owing to a very large number of possible configurations for oxidized silicon clusters,
current studies are often limited to the case of a single oxygen atom attached to the cluster
surface. Oxidized clusters were prepared from regular hydrogen-terminated spherical dots
by replacing two hydrogen atoms on the surface with a single atom of oxygen, followed by
relaxation of all interatomic forces. The model geometries for oxidized clusters are illustrated
in figure 10.

The calculated absorption spectra of oxidized silicon dots are shown in figures 11 and 12.
In figure 11 the spectra of small oxidized and unoxidized clusters are illustrated. The
addition of oxygen creates new absorption bands in the region of lower transition energies.
Optical excitations with higher energies are also affected by oxidation, although some intense
absorption peaks observed in unoxidized clusters (such as the peaks at 6.6 and 7.8 eV for
Si5H12) appear to be only slightly shifted. Figure 12 shows the calculated spectra of the
Si29OH34 and Si35OH34 clusters.

The change in the optical absorption spectrum caused by the addition of a single oxygen
atom is small in larger clusters. To make the effect of oxidation more evident, we plot in
figure 12 the differential spectra calculated as the difference in optical absorption of the same
cluster before and after oxidation. Positive values of differential photoabsorption correspond
to the new absorption peaks that appear only after oxidation. The differential absorption
spectra for Si29OH34 and Si15OH34 clearly show the presence of low-energy optical transitions
associated with surface oxygen. The calculated optical absorption gaps in oxidized and
unoxidized silicon dots are compared in figure 13. The TDLDA gaps for unoxidized SinHm

clusters are adapted from our previous work [106]. The spectra are essentially quasicontinuous
and exhibit a large number of low-intensity transitions near the absorption edge. As such, the
effective optical gaps were evaluated at a very small but nonzero fraction of the complete
electronic oscillator strength as in equation (53). The same criterion in defining the gap for
silicon quantum dots was used for the oxidized silicon clusters. Figure 13 demonstrates that
surface oxidation reduces optical gaps in hydrogenated silicon clusters by as much as 1–2 eV.
The change in the size of optical gaps is consistent with the red-shift of photoluminescence
observed in [84] and is probably responsible for the disagreement between experimental
photoluminescence from oxidized silicon nanocrystals and theoretical estimates based on the
quantum confinement model.

A surprising result of oxygen absorption is the small difference observed in the optical
gaps between cluster isomers with Si=O and Si–O–Si bonds on the surface. At the same time,
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Figure 10. Model geometries for hydrogenated silicon with oxygen.

figures 11 and 12 reveal substantial differences in the shapes of optical spectra for these
clusters. One can understand this difference by examining the mechanism of the gap formation
in two selected clusters: Si35OH34 (I) and (II). The order of electronic levels near the gap is
illustrated for both isomers in figures 14 and 15, respectively. These diagrams represent
simplified schemes that show only the dominant single-electron Kohn–Sham transitions within
the TDLDA description and do not account for correlations among individual excitations. The
energies of optical transitions shown in these figures correspond to one-electron singlet TDLDA
excitations [36]. They differ from transition energies of the TDLDA optical spectra shown
in figures 11 and 12, which correspond to collective electronic excitations. Nevertheless, the
single-electron diagrams are useful for the qualitative analysis of optical transitions in oxidized
silicon dots. The authors of [84] proposed that photoluminescence in small oxidized silicon
clusters occurs between the trapped electron and hole states, both of which are associated
with the double Si=O bond on the cluster surface. Specifically, the trapped electron state is a
p state localized on silicon and the trapped hole state is a p state localized on oxygen. Spatial
distributions of electron densities for the lowest unoccupied molecular orbital (LUMO) and the
highest occupied molecular orbital (HOMO) of the Si35OH34 (II) cluster plotted in figure 14
confirm that these states are indeed represented by p states mainly localized on the silicon and
oxygen atoms. However, the distributions of HOMO and LUMO electron densities for the
Si35OH34 (I) cluster shown in figure 15 reveal a different picture. The LUMO state is, for the
most part, localized on two silicon atoms that form the Si–O–Si bonds. At the same time,
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Figure 11. Left: calculated TDLDA absorption spectra of oxidized hydrogen-terminated silicon
clusters [110]. Right: TDLDA spectra of unoxidized clusters. All spectra were broadened by
0.1 eV using a Gaussian convolution.
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Figure 12. Left: calculated TDLDA absorption spectra of Si29OH34 and Si35OH34 clusters [110].
Right: difference in optical absorption between clusters with and without oxygen on the surface.
All spectra are broadened by 0.1 eV.

the HOMO state is not localized on the oxygen atom. Instead, this electronic state is spread
among the layers of silicon atoms surrounding the Si–O–Si fragment. In both cases, the direct
dipole transitions between the HOMO and LUMO states are forbidden. The absorption edge
for Si35OH34 (II) is formed mainly by transitions from lower occupied orbitals to the LUMO
state. For this cluster, transitions from the HOMO state to higher unoccupied orbitals do not
contribute to optical absorption near the gap. For Si35OH34 (I), however, both of these types
of electronic transition are involved in the formation of the absorption edge.

Such calculations show that even a low concentration of oxygen on the surface can
substantially alter the optical properties of silicon nanoclusters. However, experimental studies
are not always limited to clusters with low oxygen content. Some limited studies have been
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Figure 14. Schematic representation of electronic levels in the vicinity of the gap for Si35OH34 (I)
clusters [110]. Spatial distributions of electron densities are shown for the HOMO and LUMO
states.

performed on dots with a higher concentration of oxygen, e.g., Si35O6H24. This cluster was
prepared from the hydrogen-terminated dot Si35H36 by replacing 12 outer-shell hydrogen
atoms with oxygen to form six double Si=O bonds at the positions symmetrically equivalent
to that shown in figure 10 for Si35OH34 (II). The increase in oxygen coverage caused a further
reduction of the absorption gap to 2.4 eV. This value was approximately 0.4 eV lower than
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Figure 15. Schematic representation of electronic levels in the vicinity of the gap for Si35OH34 (II)
clusters [110]. Spatial distributions of electron densities are shown for the HOMO and LUMO
states.

the absorption gap for Si35OH34 (II), and almost 1.6 eV lower than the gap for the unoxidized
cluster Si35H36. The principal mechanism of gap formation for Si35O6H24 appears to be similar
to that for Si35OH34. The additional reduction of the absorption gap in the case of Si35O6H24

could be explained by interactions among oxygen-induced electronic states. The absorption
gap for Si35OH34 is reduced by the presence of localized oxygen-induced levels. In the limit of
large clusters, the positions of these levels should be essentially independent of the cluster size.
Since the gaps in silicon dots decrease with increasing cluster size as a result of diminishing
quantum confinement, at some point the oxygen-induced states are expected to cross over the
electronic levels from the body of the cluster. After this point, the oxygen-induced states would
no longer be located inside the gap. Calculations suggest that, depending on the fraction of
oxygen coverage, the oxygen-induced states should not cross over the levels from the body of
the cluster for silicon dots up to approximately 20–25 Å in diameter [107]. For larger dots,
the overall effect of surface oxidation on the optical properties is likely to be less important.

3.5. CdSe quantum dots

While silicon is the premier electronic material, it is problematic as to whether it is the material
of choice for quantum dots [113]. In particular, much work has been devoted to the study of
the optical onset in colloidally prepared II–VI semiconductors [114–116].

The size of such quantum dots can be used to tune the optical gap across a major portion of
the visible spectrum. For example, in the case of CdSe, the optical gap can be tuned from the
deep red (1.7 eV) to green (2.4 eV) by reducing the dot diameter from 20 to 2 nm [114, 115].
The ability to use ‘size’ as a variable in tailoring the desired properties of the system has made
II–VI quantum dots promising materials for the development of new electronic and optical
devices such as light emitting diodes [114] and solar cells [117].
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One way of synthesizing II–VI quantum dots is allowing molecular or ionic precursors to
react together in solution forming the dots as colloids. CdSe and CdS have been two of the most
studied II–VI dots due to the availability of precursors, the ease of their crystallization, and
the fact that their optical gap can be in the visible range. CdX (X = S, Se) quantum dots can
be synthesized by mixing Cd(CH3)2 with a chalcogenide reagent in a coordinating solvent.
A solvent commonly used is a mixture of TOP and TOPO (trioctyl phosphine and trioctyl
phosphine oxide), which acts as a surfactant [115]. This method leads to highly monodisperse
quantum dots passivated with TOP/TOPO. These quantum dots can also be terminated with
other capping agents such as thiolates, pyridine, or selenophenols [118–120].

Several empirical and semiempirical theoretical studies of CdX quantum dots have been
reported [121, 122]. Wang and Zunger [121], and later Rabani et al [122], calculated optical
gaps of CdSe quantum dots using an empirical pseudopotential method. The results obtained
by these authors compare well with experiment. In their work, they used a ligand potential
model [121] in order to simulate the surface passivation. This model places a short-range
electrostatic potential near the surface atoms. The potentials are taken to be Gaussians that
are placed in the direction of the missing atom. However, the choice of the magnitude of the
potential and the width of the Gaussian, as well as the distance from the centre of the Gaussian
to the surface atom, can change the values of the calculated optical gaps.

It is possible to examine such systems using TDLDA as implemented for silicon quantum
dots. However, the pseudopotentials for II–VI semiconductors must be carefully crafted. The
outlying cation d states cannot be considered as true core states as the core–valence charge
overlap is significant [99]. In the case of the Cd pseudopotential, one option is to include the
4d states as part of the valence shell. This procedure would necessitate using a finer grid in real
space and more than doubling the required number of valence electrons. This option is viable,
although it greatly increases the computational load [99]. Another option is to include the
effect of the 4d implicitly via a ‘core correction’ [51] as outlined in section 2.1 (equation (7)).

A few studies using TDLDA or related methods have been applied to CdSe quantum
dots. One is by Deglmann et al [123]. In this work, they calculated the optical gaps for CdSe
quantum dots using a time-dependent density functional formalism. The structures of the CdSe
quantum dots were optimized with symmetry restrictions. The final structures of the quantum
dots calculated using this method do not have the bulk structure. In fact, the resulting structures
are strongly distorted from that of the bulk crystal, and the bond lengths are significantly larger.
This is in disagreement with experimental findings [115]. Their calculated optical gaps differ
from those obtained experimentally. For most of the dots they studied, the value of the optical
gap is already smaller than that of the bulk phase, even for the smaller dots. Another study has
been performed by Eichkorn and Ahlrichs [124]. In this work, quantum dots were modelled
using a ligand-stabilized cluster of CdSe. A few low-lying excitations were determined using
TDLDA. However, the dots examined were not stoichiometric.

Real-space pseudopotential calculations have been performed using TDLDA for the
optical absorption spectra and optical gaps of CdnSen quantum dots (n = 17, 26 and 38) [125].
The dots studied are spherical fragments of the wurtzite crystal. Owing to the large number
of atoms of the capping agents and uncertainty in the local geometry of the TOPO/TOP–
quantum dot interface, it is not feasible to model this system directly. In these studies,
the surface atoms were fixed to replicate the bulk geometry and the surface atoms were not
capped with any passivating agent [125]. This procedure has a number of advantages. From
a computational point of view, it is not necessary to extract eigenvalues of species that are
expected to be electronically inert. Moreover, it removes uncertainties associated with variant
capping species. Figure 16 shows the structures of the quantum dots correspond to clusters of
Cd17Se17, Cd26Se26, and Cd38Se38, respectively.
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Figure 16. Structures of Cd17Se17, Cd26Se26, and Cd38Se38 wurtzite dots.

As noted in the case of hydrogenated silicon dots, it is not straightforward to define an
optical gap when the system possess a number of low-lying electronic excitations. This is also
the case for unpassivated CdSe quantum dots. This is a disadvantage in using a bare cluster
to model a quantum dot; i.e., the dangling bond states have not been explicitly removed by a
passivating agent. However, one can construct a well defined procedure to extract a gap as in
equation (53).

Figure 17 shows the size dependence of the optical gaps for CdSe quantum dots from theory
and experiment. The measured optical gap for the smallest dot shown is 3.8 eV. For sufficiently
large dots, one expects the optical gap to converge to the bulk value of 1.7 eV [126]. This is
consistent from experimental studies of dots over a wide range of sizes [115, 127]. Figure 3
also shows the optical gaps obtained experimentally by Soloviev et al [127], Murray et al [115]
and Rogach et al [128].

It can be observed that the optical gaps calculated using time-independent LDA
significantly underestimate the experimental gaps as well as the gaps calculated using TDLDA
when the ‘2% rule’ is invoked, i.e., a value of p = 0.02 is used in equation (53) (as suggested
in [100] for small semiconductor clusters of GaAs). Specifically, the LDA gaps are more than
2 eV smaller than the TDLDA values and in poor agreement with experiment. In contrast, the
optical gaps calculated using TDLDA show good agreement with the experimental findings,
especially with those of Soloviev et al [127].
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Figure 17. Size dependence of the optical gap for CdSe quantum dots. The dashed curve is a
guide to the eye, roughly fitted to the measured gaps. Open symbols represent gaps calculated from
TDLDA (squares) and LDA (triangles). The solid symbols are measured gaps from Soloviev et al
[127] (squares), Rogach et al [128] (dots), and Murray et al [115] (diamonds).

4. Conclusions

We have illustrated a method for calculating the optical properties of localized systems
including molecules, clusters, and quantum dots. Our method utilizes a real-space description
of the electronic structure problem described by pseudopotentials and DFT. The optical
properties of these systems can be predicted by using time-dependent DFT and, in particular,
the TDLDA. The only additional approximation beyond those in the static electronic structure
problem is the adiabatic approximation. This approach to optical properties is easy to
implement and allows one to consider large systems in a straightforward manner.

In contrast to other methods such as the GW–BS method [76, 77], TDLDA offers an
efficient procedure for large systems. When implemented in real space using linear response
theory, TDLDA can be applied to systems with several hundred, if not thousands of electrons.
At the same time, as a fully ab initio technique, TDLDA avoids many of the controversies
associated with empirical or semi-empirical methods. The ab initio nature of the TDLDA
formalism makes it flexible in application to a variety of systems composed of different
chemical elements. Moreover, unlike recent advances in quantum Monte Carlo methods [30],
TDLDA can yield the full optical spectrum.
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[106] Vasiliev I, Öğüt S and Chelikowsky J R 2001 Phys. Rev. Lett. 86 1813
[107] Vasiliev I, Chelikowsky J R and Martin R M 2002 Phys. Rev. B 65 121302
[108] Puzder A, Williamson A J, Grossman J C and Galli G 2002 Phys. Rev. Lett. 88 097401
[109] Mitas L, Therrien J, Twesten R, Belomoin G and Nayfeh M H 2001 Appl. Phys. Lett. 78 1918
[110] Vasiliev I and Martin R M 2002 Phys. Status Solidi b 233 5
[111] Martin E, Delerue C, Allan G and Lannoo M 1994 Phys. Rev. B 50 18258
[112] Takagahara T and Takeda K 1996 Phys. Rev. B 53 R4205
[113] Chelikowsky J R 2002 MRS Bull. 27 951
[114] Alivisatos A P 1996 Science 271 933
[115] Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
[116] Gorer S and Hodes G 1994 J. Phys. Chem. 89 5338
[117] Gal D, Hodes G, Hariskos D, Braunger D and Schock H-W 1998 Appl. Phys. Lett. 73 3135
[118] Kuno M, Lee J K, Dabbousi B O and Mikulec F V 1997 J. Chem. Phys. 106 9869
[119] Carter A C et al 1997 Phys. Rev. B 55 13822
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